(本题10分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102, 101, 99, 98, 103, 98, 99;
乙:110, 115, 90, 85, 75, 115, 110。
(Ⅰ)这种抽样方法叫做什么抽样方法?
(Ⅱ)将这两组数据用茎叶图表示出来;
(Ⅲ)将两组数据比较:说明哪个车间的产品较稳定。
定义:设分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线到直线
的距离;
(2)已知曲线到直线
的距离为
,求实数
的值;
(3)求圆到曲线
的距离.
设正四棱锥的侧面积为
,若
.
(1)求四棱锥的体积;
(2)求直线与平面
所成角的大小.
已知函数.
(1)求的单调区间;
(2)当时,判断
和
的大小,并说明理由;
(3)求证:当时,关于
的方程:
在区间
上总有两个不同的解.
已知椭圆的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
设,若
,
,
.
(1)若,求
的取值范围;
(2)判断方程在
内实根的个数.