某机构向民间招募防爆犬,首先进行入围测试,计划考察三个项目:体能,嗅觉和反应.这三个项目中只要有两个通过测试,就可以入围.某训犬基地有4只优质犬参加测试,已知它们通过体能测试的概率都是1/3,通过嗅觉测试的概率都是1/3,通过反应测试的概率都是1/2.
求(1)每只优质犬能够入围的概率;
(2)若每入围1只犬给基地记10分,设基地的得分为随机变量ξ,求ξ的数学期望.
如图,平行四边形中,
,
将
沿
折起到
的位置,使平面
平面
(I)求证:(Ⅱ)求三棱锥
的侧面积。
已知一个圆经过直线
和圆
的两个交点,且有最小面积,求此圆的方程.
已知命题p:,若非
是非
的必要不充分条件,求实数m的取值范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
已知二次函数满足
(1)求函数的解析式 ;
(2)若在
上恒成立,求实数
的取值范围;
(3)求当(
>0)时
的最大值