已知是定义在
上的偶函数,当
时,
。
(1)用分段函数形式写出在
上的解析式;
(2)画出函数的大致图象;并根据图像写出
的单调区间;
右表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知
(1)求数列的通项公式;
(2)设求数列
的前
项和
。
已知向量,
当时,求函数
的值域:
(2)锐角中,
分别为角
的对边,若
,求边
.
南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组、第2组
、第3组
、第4组
、第5组
,得到的频率分布直方图如图所示:
(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,南昌市决定在这12名志愿者中在第四或第五组的志愿者中,随机抽取3名志愿者到学校宣讲交通安全知识,求到学校宣讲交通知识的资源者中恰好1名市第五组的概率.
已知函数若函数
在
和
上是增函数,在
是减函数,求
的值;
讨论函数
的单调递减区间;
如果存在
,使函数
,
,在
处取得最小值,试求
的最大值.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且
.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:
+
=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为
,求证:直线MN过定点.