已知函数。
(1)若,求a的值;
(2)若a>1,求函数f(x)的单调区间与极值点;
(3)设函数是偶函数,若过点A(1,m)
可作曲线y=f(x)的三条切线,求实数m的范围。
2005年某市的空气质量状况分布如下表:
污染指数X |
30 |
60 |
100 |
110 |
130 |
140 |
P |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
其中X50时,空气质量为优,
时空气质量为良,
时,空气质量为轻微污染。(1)求E(X)的值;
(2)求空气质量达到优或良的概率。
(本小题满分12分)求抛物线与直线
围成的平面图形的面积.
(本小题满分10分)六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙按自左至右顺序排队(可以不相邻);
(5)甲、乙站在两端.
(本小题满分13分)已知函数,其中
.
(Ⅰ)判断函数的奇偶性,并说明理由;
(Ⅱ)设,且
对任意
恒成立,求
的取值范围.
(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以
km/h(其中
)速度行驶时,汽车的耗油率为
L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?