驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属酒后驾车,血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车.市交警一队对过往的车辆进行抽查共查出喝过酒的驾车者60名,下图是这60名驾车者血液中酒精浓度的频率分布直方图.
(1) 求这60名驾车者中属醉酒驾车的人数;(图中每组包括左端点,不包括右端点)
(2) 求这60名驾车者血液的酒精浓度的平均值;
(3) 将频率分布直方图中的七组从左到右依次命名为第一组,第二组,…,第七组,在第五组和第七组的所有人中抽出两人,记他们的血液酒精浓度分别为x,y(单位: mg/100 ml),则事件|x-y|≤10的概率是多少?
已知数列具有性质:①
为整数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
.
(1)若为偶数,且
成等差数列,求
的值;
(2)设(
且
N),数列
的前
项和为
,求证:
;
(3)若为正整数,求证:当
(
N)时,都有
.
已知函数.
(1)当时,判断
的奇偶性,并说明理由;
(2)当时,若
,求
的值;
(3)若,且对任何
不等式
恒成立,求实数
的取值范围.
某企业生产某种商品吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.
已知以角为钝角的的三角形
内角
的对边分别为
、
、
,
,且
与
垂直.
(1)求角的大小;
(2)求的取值范围
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.