(本题13分)设椭圆的左右焦点分别为
,
,上顶点为
,过点
与
垂直的直线交
轴负半轴于
点,且
是
的中点.
(1)求椭圆的离心率;
(2)若过点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下过右焦点作斜率为
的直线
与椭圆相交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形为菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
(本小题满分14分)
已知函数.
(1)求函数的最小值;
(2)证明:对任意恒成立;
(3)对于函数图象上的不同两点
,如果在函数
图象上存在点
(其中
)使得点
处的切线
,则称直线
存在“伴侣切线”.特别地,当
时,又称直线
存在“中值伴侣切线”.试问:当
时,对于函数
图象上不同两点
、
,直线
是否存在“中值伴侣切线”?证明你的结论.
(本小题满分13分)
已知抛物线,过点
的直线
与抛物线交于
、
两点,且直线
与
轴交于点
.(1)求证:
,
,
成等比数列;
(2)设,
,试问
是否为定值,若是,求出此定值;若不是,请说明理由.
(本小题满分12分)
已知函数.
(1)若函数的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在
上是减函数,求实数
的取值范围.
(本小题满分12分)
为备战2012奥运会,甲、乙两位射击选手进行了强化训练. 现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理? 简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为,求
的分布列及均值E
.
(本小题满分12分)
已知点是圆
上任意一点,点
与点
关于原点对称.线段
的中垂线
分别与
交于
两点.
(1)求点的轨迹
的方程;
(2)斜率为1的直线与曲线
交于
两点,若
(
为坐标原点),求直线
的方程.