(本题满分12分)
已知椭圆的中心在原点,焦点在坐标轴上,直线
与该椭圆相交于
和
,且
,
,求椭圆的方程.
(本小题满分12分)
为备战2012奥运会,甲、乙两位射击选手进行了强化训练. 现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理? 简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为,求
的分布列及均值E
.
(本小题满分12分)
已知点是圆
上任意一点,点
与点
关于原点对称.线段
的中垂线
分别与
交于
两点.
(1)求点的轨迹
的方程;
(2)斜率为1的直线与曲线
交于
两点,若
(
为坐标原点),求直线
的方程.
(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,
,E是SA的中点.
(1)求证:平面BED平面SAB;
(2)求直线SA与平面BED所成角的大小.
(本小题满分14分)已知函数,其中
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,求函数
的单调区间与极值.
(本小题满分14分)已知圆过点
, 且在
轴上截得的弦
的长为
.
(1) 求圆的圆心的轨迹方程;
(2) 若, 求圆
的方程.