(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程;(2)过椭圆C上一点作圆的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若取值范围恰为,求椭圆C的方程.
如图所示,已知长方体中,,是棱上的点,且。 (1)求的长; (2)求证:平面; (3)求与平面所成角的正弦值。
已知集合函数的定义域为集合B。 (1)若,求集合; (2)已知是“”的充分不必要条件,求实数a的取值范围。
已知复数是纯虚数。(1)求的值; (2)若复数,满足,求的最大值。
已知,且,求证:≥8。
已知曲线C的极坐标方程是,直线的参数方程是。 (1)将曲线C的极坐标方程化为直角坐标方程; (2)设直线与轴的交点是M,N是曲线C上一动点,求的最大值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号