游客
题文

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,已知正三棱柱的各棱长都为为棱上的动点.

(Ⅰ)当时,求证:
(Ⅱ)若,求二面角的大小;
(Ⅲ)在(Ⅱ)的条件下,求点到平面的距离.

某种球的比赛中规定,每次的结果不能出现平局的情况.每赢一次记1分,输一次记0分,先得满20分为赢,赢方可获奖金16万元,现有甲、乙两名水平相当的运动员,当比赛进行到甲、乙两人的积分为17:18时,比赛因某种原因停止,如果按甲、乙两人获胜的概率来分这笔奖金,如何分配这笔奖金?

已知向量
(Ⅰ)当时,求向量的夹角
(Ⅱ)当时,求函数的最大值.

已知函数若方程有且只有两个相异实根0,2,且
(Ⅰ)求函数的解析式;
(Ⅱ)已知各项均不为1的数列满足求通项
(Ⅲ)如果数列满足求证:当时恒有成立.

在平面直角坐标系中,O为坐标原点,已知点M(1,-3),N(5,1),若点C满足
,点C的轨迹与抛物线交于A、B两点.
(Ⅰ)求证:
(Ⅱ)在轴正半轴上是否存在一定点P(m,0),使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号