(本小题共12分)
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) |
[15,25![]() |
[25,35![]() |
[35,45![]() |
[45,55![]() |
[55,65![]() |
[65,75![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
(1)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
|
月收入不低于55百元的人数 |
月收入低于55百元的人数 |
合计 |
赞成 |
![]() |
![]() |
|
不赞成 |
![]() |
![]() |
|
合计 |
|
|
|
(2)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量
的分布列。
附:
有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”.已知和
是先后抛掷该枚骰子得到的数字,函数
(1)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数有零点的概率;
(2)求函数在区间(-3,+∞)上是增函数的概率.
已知定义在上的函数
,其中
为常数.
(1)若是函数
的一个极值点,求
的值;
(2)若函数在区间
上是增函数,求
的取值范围.
已知数列:
(1)观察规律,写出数列的通项公式,它是个什么数列?
(2)若,设
,求
。
(3)设,
为数列
的前
项和,求
。
在△ABC中,角所对的边分别是
,且
。
(1)求的值;
(2)若,
的面积
,求
的值。
已知的解集为
,求不等式
的解集.