(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点
,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线
过定点,并求该定点的坐标。
某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(1)设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a、b,有f(a-b)=f(a)-b(2a-b+1),求f(x);
(2)函数f(x) (x∈(-1,1))满足2f(x)-f(-x)=lg(x+1),求f(x).
(1)求函数f(x)=的定义域;
(2)已知函数f(2x)的定义域是[-1,1],求f(log2x)的定义域.
求函数y=(4x-x2)的单调区间.
讨论函数f(x)=x+(a>0)的单调性.