已知椭圆的右焦点
与抛物线
的焦点重合,左端点为
(1)求椭圆的方程;
(2)过椭圆的右焦点且斜率为
的直线
被椭圆
截的弦长
。
如图所示,在直三棱柱中,
,
为
的中点.
(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.
在等差数列和等比数列
中,a1=2, 2b1=2, b6=32,
的前20项和S20=230.
(Ⅰ)求和
;
(Ⅱ)现分别从和
的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.
已知函数为偶函数,周期为2
.
(Ⅰ)求的解析式;
(Ⅱ)若的值.
设函数f(x)=.
(Ⅰ)当a=-5时,求函数f(x)的定义域;
(II)若函数f(x)的定义域为R,试求a的取值范围.
已知曲线的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与
交点的极坐标(
).