某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为
(1)求该生被录取的概率;
(2)记该生参加考试的项数为,求
的分布列和期望.
设命题P:函数在区间[-1,1]上单调递减;
命题q:函数的定义域为R.若命题p或q为假命题,求
的取值范围.
已知;
(1)如果求
的值;
(2)如果求实数
的值.
已知椭圆过点
,且离心率
.
(1)求椭圆的标准方程;
(2)若直线与椭圆
相交于
,
两点(
不是左右顶点),椭圆的右顶点为
,且满足
,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
已知函数在
与
时都取得极值.
(1)求的值及
的极大值与极小值;
(2)若方程有三个互异的实根,求
的取值范围;
(3)若对,不等式
恒成立,求
的取值范围.
某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值
(单位:元,
)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成
的函数;
(2)如何定价才能使一个星期的商品销售利润最大?