A.(几何证明选讲选做题)
![]() |
B.(矩阵与变换选做题) 已知M= ![]() ![]() |
C.(坐标系与参数方程选做题) 在平面直角坐标系xOy中,直线m的参数方程为 ![]() |
D.(不等式选做题) |
设x,y均为正数,且x>y,求证:2x+≥2y+3.
已知都是非零实数,且
,求证:
的充要条件是
.
在平面直角坐标系中,椭圆
的中心为原点,焦点
在
轴上,离心率为
,过点
的直线
交椭圆
于
两点,且
的周长为16,求椭圆
的标准方程.
如图,椭圆的离心率为
,直线
和
所围成的矩形ABCD的面积为8.
(1)求椭圆M的标准方程;
(2)设直线与椭圆
有两个不同的交点
与矩形ABCD有两个不同的交点
.求
的最大值及取得最大值时
的值.
已知一条曲线C在y轴右边,C上任一点到点F(2,0)的距离减去它到y轴的距离的差都是2
(1)求曲线C的方程;
(2)一直线l与曲线C交于A,B两点,且|AF|+|BF|=8,证:AB的垂直平分线恒过定点.
如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,
(1)求证:AC⊥BD;
(2)若平面ABD⊥平面CBD,且BD=,求二面角C﹣AD﹣B的余弦值.