已知函数 .
(1)画出 a =" 0" 时函数的图象;
(2)求函数 的最小值.
已知函数
(Ⅰ)若函数在
处取到极值,求
的值.
(Ⅱ)设定义在上的函数
在点
处的切线方程为
,若
在
内恒成立,则称
为函数的
的“HOLD点”.当
时,试问函数
是否存在“HOLD点”,若存在,请至少求出一个“HOLD点”的横坐标;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,经过点
,离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆的左、右顶点分别为、
,点
为直线
上任意一点(点
不在
轴上),
连结交椭圆于
点,连结
并延长交椭圆于
点,试问:是否存在
,使得
成立,若存在,求出
的值;若不存在,说明理由.
如图,已知平面平面
,
与
分别是棱长为1与2的正三角形,
//
,四边形
为直角梯形,
//
,
,点
为
的重心,
为
中点,
,
(Ⅰ)当时,求证:
//平面
(Ⅱ)若直线与
所成角为
,试求二面角
的余弦值.
已知数列为等比数列,其前
项和为
,已知
,且对于任意的
有
,
,
成等差;
(Ⅰ)求数列的通项公式;
(Ⅱ)已知(
),记
,若
对于
恒成立,求实数
的范围.
在△ABC中,角所对的边分别为
,
,△ABC的面积为
,
(Ⅰ)若,求
;
(Ⅱ)若为锐角,
,求
的取值范围.