已知双曲线实轴在轴,且实轴长为2,离心率
, L是过定点
的直线.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于,
两点,且线段
恰好以点
为中点,若存在,求出直线L的方程,若不存,说明理由.
如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.
(1)证明:平面ACD平面
;
(2)若,
,
,试求该简单组合体的体积V.
已知向量,
,对任意
都有
.
(1)求的最小值;
(2)求正整数,使
在中,角
所对的边分别为
,函数
在
处取得最大值.
(1)求角A的大小.
(2)若且
,求
的面积.
已知函数(
、
为常数),在
时取得极值.
(1)求实数的取值范围;
(2)当时,关于
的方程
有两个不相等的实数根,求实数
的取值范围;
(3)数列满足
(
且
),
,数列
的前
项和为
,
求证:(
,
是自然对数的底).
设定圆,动圆
过点
且与圆
相切,记动圆
圆心
的轨迹为
.
(1)求轨迹的方程;
(2)已知,过定点
的动直线
交轨迹
于
、
两点,
的外心为
.若直线
的斜率为
,直线
的斜率为
,求证:
为定值.