某园林公司计划在一块为圆心,
(
为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形
区域用于观赏样板地,
区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设, ,用
表示弓形
的面积
;
(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的
(参考公式:扇形面积公式,
表示扇形的弧长)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤
≤200时,车流速度
是车流密度
的一次函数.
(Ⅰ)当0≤≤200时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时
可以达到最大,并求出最大值.(精确到1辆/小时).
设,其中
为常数.
(1)求曲线(x)在点(4,2)处的切线方程;
(2)如果函数(x)的图象也经过点(4,2),求
(x)与(1)中的切线的交点.
已知,不等式
的解集
(Ⅰ)求的值;
(Ⅱ)若恒成立,求
的取值范围.
已知:
,
:函数
存在极大值和极小值,求使“
”为真命题的
的取值范围.
已知,
(
).
(1)若,求证:
;
(2)设,若
,求
的值.