为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层(即x=0时),每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值;
(2)求f(x)的表达式;
(3)利用“函数(其中
为大于0的常数),在
上是减函数,在
上是增函数”这一性质,求隔热层修建多厚时,总费用f(x)达到最小,并求出这个最小值.
设函数.
(1)当时,求函数
的最小值;
(2)证明:对,都有
;
在等腰梯形ABCD中,,
,
,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转
,得到梯形
.
(1)求证:平面
;
(2)求证:平面
;
已知数列的前
项和为
,且满足:
,
N*,
.
(1)求数列的通项公式;
(2)若存在N*,使得
,
,
成等差数列,试判断:对于任意的
N*,且
,
,
,
是否成等差数列,并证明你的结论.
设函数(1)求
的单调递增区间. (2)已知函数
的图象在点A(
)处,切线斜率为
,求:
已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×
<
(n≥2,n∈N*).