为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层(即x=0时),每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值;
(2)求f(x)的表达式;
(3)利用“函数(其中
为大于0的常数),在
上是减函数,在
上是增函数”这一性质,求隔热层修建多厚时,总费用f(x)达到最小,并求出这个最小值.
在正项数列中,
,对任意
,函数
满足
,
(1)求数列的通项公式;
(2)求数列的前
项和
。
大家知道,莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:
(1)试估计该学校学生阅读莫言作品超过50篇的概率。
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为对莫言作品的非常了解与性别有关?
设函数,其中向量
。
(1)求的最小值,并求使
取得最小值的
的集合。
(2)将函数图像沿
轴向右平移,则至少平移多少个单位长度,才能使得到的函数
的图像关于
轴对称。
已知数列满足
(1)若,数列
单调递增,求实数
的取值范围。
(2)若,试写出
对任意
成立的充要条件,并证明你的结论。
已知椭圆的方程为
,其中
。
(1)求椭圆形状最圆时的方程。
(2)若椭圆最圆时任意两条互相垂直的切线相较于点
,证明:点
在一个定圆上