已知函数
满足:对于任意实数
,都有
恒成立,且当
时,
恒成立;
(1)求
的值,并例举满足题设条件的一个特殊的具体函数;
(2)判定函数
在R上的单调性,并加以证明;
(3)若函数
(其中
)有三个零点
,求
的取值范围.
(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。
(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在
上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出
的值
(本小题11分)如图,在四棱锥
中,
平面
,
,
,
,
,
.
(1)证明:
平面
(2)求
和平面
所成角的正弦值
(3)求二面角
的正切值;
(本小题8分)如图所示,在正三棱柱
中,若
,
,
是
中点。
(1)证明:
平面
;
(2)求
与
所成的角的大小。
(本小题9分)如图是一个空间几何体的三视图,其正视图与侧视图是边长为4cm的正三角形、俯视图中正方形的边长为4cm,
(1)画出这个几何体的直观图(不用写作图步骤);
(2)请写出这个几何体的名称,并指出它的高是多少;
(3)求出这个几何体的表面积。
已知抛物线
过点
.
(I)求抛物线的方程;
(II)已知圆心在
轴上的圆
过点
,且圆
在点
的切线恰是抛物线在点
的切线,求圆
的方程;
(Ⅲ)如图,点
为
轴上一点,点
是点
关于原点的对称点,过点
作一条直线与抛物线交于
两点,若
,证明:
.