游客
题文

已知,,是否存在实数,使同时满足下列两个条件:(1)上是减函数,在上是增函数;(2)的最小值是,若存在,求出,若不存在,说明理由.

科目 数学   题型 解答题   难度 容易
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表如下:

分组
频数
频率
[40,50)
2
0.04
[50,60)
3
0.06
[60,70)
14
0.28
[70,80)
15[]
0.30
[80,90)
A
B
[90,100]
4
0.08
合计
C
D

随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.

(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.

已知函数图象的一条对称轴为
(1)求的值;
(2)若存在使得成立,求实数m的取值范围;
(3)已知函数在区间上恰有50次取到最大值,求正数的取值范围.

如图,已知正方形ABCD在直线MN的上方,边BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG,其中AE=2,记∠FEN=,△EFC的面积为

(1)求之间的函数关系;
(2)当角取何值时最大?并求的最大值.

已知圆:轴相切,点为圆心.
(1)求的值;
(2)求圆轴上截得的弦长;
(3)若点是直线上的动点,过点作直线与圆相切,为切点.求四边形面积的最小值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号