如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。
(I)求证:A1B∥平面AMC1;
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知等式,其中
(
=0,1,2,…,100)为实常数.求:
(1)的值;(2)
的值.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱
上的一点,
.
(1)当时,求直线AP与平面BDD1B1所成角的度数;
(2)在线段上是否存在一个定点
,使得对任意的m,
⊥AP,并证明你的结论.
选修4-5:不等式证明选讲
已知函数. 若不等式
对a¹0, a、bÎR恒成立,求实数x的范围.
C. 选修4-4:坐标系与参数方程.
已知在直角坐标系x0y内,直线l的参数方程为 (t为参数).以Ox为极轴建立极坐标系,圆C的极坐标方程为
.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)判断直线l和圆C的位置关系.
B. 选修4-2:矩阵与变换
已知, 求矩阵B.