某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
千元,设该容器的建造费用为
千元.
(1)写出关于
的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的.
已知函数.
(1)用“五点法”画出函数f(x)在[0,]上的简图;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=1,,b+c=3(b>c),求b,c的长.
已知0<a<1,判断函数的奇偶性,并求出函数f(x)的周期.
设α∈(0,),f(x)的定义域为[0,1],f(0)=0,f(1)=1,当x≥y时,有
,求
、
.
已知函数.
(1)当a=1时,求函数f(x)的单调递增区间;
(2)(ⅰ)当a<0且x∈[0,π]时,函数f(x)的值域是[3,4],求a+b的值;
(ⅱ)当a<0时,函数f(x)的值域是[3,4],求a+b的值.
已知向量a=(cosx,sinx),b=(sin2x,1-cos2x),c=(0,1),x∈(0,π).
(1)向量a、b是否共线?请证明你的结论.
(2)若函数f(x)=|b|-(a+b)·c,求f(x)的最小值,并指出取得最小值时的x值.