游客
题文

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将对该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)
8
8.2
8.4
8.6
8.8
9
销售y(件)
90
84
83
80
75
68

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
其中(
(2)预计在今后的销售中,销售与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面

(1)证明:
(2)求三棱锥的高.

(本小题满分12分)
某校从参加高二年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次数学成绩的平均数;
(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人分数在的概率.

(本小题满分12分)
已知等比数列的前项和为,且
(1)求的值及数列的通项公式
(2)求数列的前项和

(本小题满分12分)
已知△的内角所对的边分别为
(1)若, 求的值;
(2)若△的面积的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号