如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).
(1)当t为何值时,PQ∥BC.
(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.
(1)收集数据
从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 班级 |
|
|
|
|
|
甲班 |
1 |
3 |
3 |
2 |
1 |
乙班 |
2 |
1 |
|
2 |
|
在表中: , .
(3)分析数据
①两组样本数据的平均数、中位数、众数如表所示:
班级 |
平均数 |
中位数 |
众数 |
甲班 |
72 |
|
75 |
乙班 |
73 |
70 |
|
在表中: , .
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有 人.
③现从甲班指定的2名学生 男1女),乙班指定的3名学生 男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.
先化简, 再求值: ,其中 是方程 的根
如图,已知 , ,求证: .
已知抛物线的顶点为 并经过点 ,点 在抛物线的对称轴上并且纵坐标为 ,抛物线交 轴于点 .如图1.
(1)求抛物线的解析式;
(2)点 为抛物线对称轴上的一点, 为等腰三角形,求点 的坐标;
(3)如图2,点 为直线 上的一个动点,过点 的直线 与 垂直
①求证:直线 与抛物线总有两个交点;
②设直线 与抛物线交于点 、 (点 在左侧),分别过点 、 作直线 的垂线,垂足分别为 、 .求 的长.
如图1, 是 的直径 上的一点,过 作 交 于 、 , 是 上的一点,过 的直线分别与 、 的延长线相交于 、 ,连接 交 于 , .
(1)求证: 是 的切线;
(2)若 , 的半径为4, ,求 的长;
(3)如图2,在(2)的条件下,连接 、 ;在线段 上有一点 ,并且以 、 、 为顶点的三角形与 相似,求 的长度.