如图,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线的图象上,过点B作
轴,垂足为D,且B点横坐标为
.
(1)求证:;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使 △ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,已知二次函数
的图像与
轴交于点
,与
轴交于A、B两点,点B的坐标为
求二次函数的解析式及顶点D的坐标;
点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点
的坐标;
点P是第二象限内抛物线上的一动点,问:点P在何处时△
的面积最大?最大面积是多少?并求出 此时点P的坐标.
已知:等边中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC, BC上,且
.
如图1,当CM=CN时, M、N分别在边AC、BC上时,请写出AM、CN 、MN三者之间的数量关系;
如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;
如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN 、MN三者之间的数量关系.
已知关于的方程
.
若方程有两个不相等的实数根,求
的取值范围;
若正整数
满足
,设二次函数
的图象与
轴交于
两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线
与此图象恰好有三个公共点时,求出
的值(只需要求出两个满足题意的k值即可).
阅读并回答问题:
小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程时,突发
奇想:在实数范围内无解,如果存在一个数i,使
,那么当
时,有
i,从而
i是方程
的两个根.
据此可知: i可以运算,例如:i3=i2·i=-1×i=-i,则i4=,
i2011=______________,i2012=__________________;方程
的两根为(根用i表示).
如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的与AD,AC分别交于点E,F,∠ACB="∠DCE" .
请判断直线CE与
的位置关系,并证明你的结论;
若 DE:EC=1:
,
,求⊙O的半径.