设函数f(x)= ×
,其中向量
="(2cosx,1),"
=(cosx,
sin2x+m).
(1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间;
(2)当xÎ[0,]时,ô f(x)ô <4恒成立,求实数m的取值范围.
在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点
(1)求直线A′C与DE所成的角;
(2)求直线AD与平面B′EDF所成的角;
(3)求面B′EDF与面ABCD所成的角
如图,正三棱柱ABC—A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF∶FC=1∶3
(1)若M为AB中点,求证BB1∥平面EFM;
(2)求证EF⊥BC;
(3)求二面角A1—B1D—C1的大小
【挑战自我】
如图,已知PD⊥平面ABCD,AD⊥DC,AD∥BC,PD∶DC∶BC=1∶1∶.
(1)求二面角D-PB-C的正切值;
(2)当AD∶BC的值是多少时,能使平面PAB⊥平面PBC?证明你的结论.
已知椭圆方程,过B(-1,0)的直线l交随圆于C、D两点,交直线x=-4于E点,B、E分
的比分λ1、λ2.求证:λ1+λ2=0
在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC—D的大小为.