为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
如图所示,等腰三角形
的底边
,高
.点
是线段
上异于
的动点.点
在
边上,且
.现沿
将
折起到
的位置,使
.
记
表示四棱锥
的体积。
(1)求
的表达式;
(2)当
为何值时,
取得最大值?
(3)当
取得最大值时,求异面直线
与
所成角的余弦值。
在直角坐标系
中,已知圆心在第二象限、半径为
的圆
与直线
相切于坐标原点
.椭圆
与圆
的一个交点到椭圆两焦点的距离之和为10.
(1)求圆
的方程;
(2)试探究圆
上是否存在异于原点的点
,使
到椭圆的右焦点
的距离等于线段
的长,若存在求出
的坐标;若不存在,请说明理由.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
(1) 请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)已知该厂技术改造前
吨甲产品能耗为
吨标准煤.试根据(2)求出的线性回归方程,预测生产
吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考数据:
)
已知 的三个顶点的直角坐标分别为 、 、
(1)若
,求
的值;
(2)若
为钝角,求
的取值范围;
设椭圆
的左、右焦点分别为
是椭圆上的一点,
,原点
到直线
的距离为
.
(Ⅰ)证明
;
(Ⅱ)设
为椭圆上的两个动点,
,过原点
作直线
的垂线
,垂足为
,求点
的轨迹方程.