设函数在区间
上是增函数,在区间
,
上是减函数,又
(1)求的解析式;
(2)若在区间上恒有
成立,求
的取值范围
(本题满分为15分)如图,已知长方形中,
,
为
的中点.将
沿
折起,使得平面
平面
.
(1)求证:;
(2)若点是线段
上的一动点,问点E在何位置时,二面角
的余弦值为
.
(本题满分为15分) 在等差数列中,
,其前
项和为
,等比数列
的各项均为正数,
,公比为
,且
,
.
(1)求与
;
(2)设数列满足
,求
的前
项和
.
中,三个内角A、B、C所对的边分别为
、
、
,若
,
.
(Ⅰ)求角的大小;
(Ⅱ)已知的面积为
,求函数
的最大值.
(本小题满分14分)已知数列{}是首项为
,公比
的等比数列.
设,数列{
}满足
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)求数列{}的前
项和
;
(Ⅲ)若对一切正整数
恒成立,求实数
的取值范围.
(本小题满分12分)已知<
<
<
,
(Ⅰ)求的值.
(Ⅱ)求.