为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
(参考公式:,其中
)
(本小题满分13分)已知函数在
处取得极值.
(Ⅰ)求实数的值;
(Ⅱ)若关于的方程
在区间
上恰有两个不同的实数根,求实数
的取值范围;
(Ⅲ)证明:对任意的正整数,不等式
都成立.
(本小题满分13分) 已知椭圆E中心在原点,一个焦点为,离心率
(Ⅰ)求椭圆E的方程;
(Ⅱ)是长为
的椭圆E动弦,
为坐标原点,求
面积的最大值与最小值
(本小题满分13分) 某生产流水线由于改进了设备,预计改进后第一年年产量的增长率为,以后每年的增长率是前一年的一半,设原来的产量是
(Ⅰ) 写出改进设备后的第一年、第二年、第三年的产量,并写出第年与第
年的产量之间的关系式
;
(Ⅱ) 由于设备不断老化,估计每年将损失年产量的,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是,请说明从第几年起,产量将比上一年减少?
(本小题满分12分)已知分别在射线
(不含端点
)上运动,
,在
中,角
、
、
所对的边分别是
、
、
.
(Ⅰ)若、
、
依次成等差数列,且公差为2.求
的值;
(Ⅱ)若,
,试用
表示
的周长,并求周长的最大值.