已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若
的取值范围.
已知函数.
(1)请在所给的平面直角坐标系中画出函数的图像;
(2)根据函数的图像回答下列问题:
①求函数的单调区间;
②求函数的值域;
③求关于的方程
在区间
上解的个数.
(回答上述3个小题都只需直接写出结果,不需给出演算步骤)
已知集合,
,
.
(1)请用列举法表示集合;(2)求
,并写出集合
的所有子集.
已知函数
(1)求函数的定义域;
(2)求函数的零点;
(3)若函数的最小值为-4,求a的值.
经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.
是定义在
上的函数
(1)判断函数的奇偶性;
(2)利用函数单调性的定义证明:是其定义域上的增函数.