如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E、F.
(1)求证:△OEF是等腰直角三角形.
(2)若AE=4,CF=3,求EF的长.
(1)化简
(2)先化简,再求值:,其中
,
计算:(1)(2)
(3) (4)用简便方法计算:
如图所示,在数轴上有三个点,A,B,C,回答下列问题。
(1)A,C两点间的距离是多少?
(2)若E点与B点的距离是8,则E点表示的数是什么?
如图,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于点C,对称轴为直线
,OA = 2,OD平分∠BOC交抛物线于点D(点D在第一象限).
(1)求抛物线的解析式和点D的坐标;
(2)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)点M是抛物线上的动点,在x轴上是否存在点N,使A、D、M、N四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的M点坐标;如果不存在,请说明理由.
为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台(购机费用不超过筹集资金).根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:
A型收割机 |
B型收割机 |
|
进价(万元/台) |
5.3 |
3.6 |
售价(万元/台) |
6 |
4 |
设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.
(1)试写出y与x的函数关系式;
(2)市农机公司有哪几种购进收割机的方案可供选择?
(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?