已知数列满足:
,
,
,前
项和为
的数列
满足:
,又
。
(1)求数列的通项公式;
(2)证明:;
设Sn为等差数列{a n}的前n项和,已知a 9 =-2,S 8 =2.
(1)求首项a1和公差d的值;
(2)当n为何值时,Sn最大?并求出Sn的最大值.
设
(1)当,求
的取值范围;
(2)若对任意,
恒成立,求实数
的最小值.
极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为
为参数)。
(1)当时,求曲线Cl与C2公共点的直角坐标;
(2)若,当
变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.
如图,直线交圆
于
两点,
是直径,
平分
,交圆
于点
, 过
作
丄
于
.
(1)求证:是圆
的切线;
(2)若,求
的面积
设函数,曲线
在点
处的切线方程为
(1)确定的值
(2)若过点(0,2)可做曲线的三条不同切线,求
的取值范围
(3)设曲线在点
处的切线都过点(0,2),证明:当
时,