某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.(I)求该选手在复赛阶段被淘汰的概率;(II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (1)求证:面; (2)求二面角的大小的正弦值; (3)求点到面的距离.
在中,角所对的边为.已知,且. (1)求的值; (2)当时,求的面积.
设为等差数列的前项和,已知. (1)求数列的通项公式; (2)求证: .
(本小题满分14分) 已知函数. (Ⅰ)当时,求在区间上的最值; (Ⅱ)讨论函数的单调性; (Ⅲ)当时,有恒成立,求的取值范围.
(本小题满分13分) 已知函数为自然对数的底数. (Ⅰ)求函数的最小值; (Ⅱ)若对任意的恒成立,求实数的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号