某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.(I)求该选手在复赛阶段被淘汰的概率;(II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.
已知椭圆的对称轴是坐标轴,O为坐标原点,F是一个焦点,A是一个顶点,若椭圆的长轴长是6,且,求椭圆的方程.
在直线上任取一点,过点作以为焦点的椭圆,当M在什么位置时,所作椭圆长轴最短?求此时椭圆的方程.
求直线与双曲线的两个交点和原点构成的三角形的面积.
在椭圆上求一点,使它到直线的距离最短,并求此距离.
在抛物线上,求一点P,使P到直线的距离最短,并求距离的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号