如图所示,在四棱锥中,底面
为矩形,
平面
,点
在线段
上,
平面
.
(Ⅰ)证明:平面
;
(Ⅱ)若,
,求二面角
的正切值.
选修4-4:坐标系与参数方程:已知曲线(
为参数).
(1)将的方程化为普通方程;
(2)若点是曲线
上的动点,求
的取值范围.
选修4-1:几何证明选讲:如图,是⊙
的直径,
是⊙
的切线,
与
的延长线交于点
,
为切点.若
,
,
的平分线
与
和⊙
分别交于点
、
,求
的值.
设函数(
),
.
(1) 将函数图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
如图,三棱柱中,
⊥面
,
,
=3,
为
的中点.
(1)求证:;
(2)求二面角的余弦值;
(3)在侧棱上是否存在点
,使得
?并证明你的结论.
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?