已知圆的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程为
(
为参数).若直线
与圆
相交于
,
两点,且
.
(Ⅰ)求圆的直角坐标方程,并求出圆心坐标和半径;
(Ⅱ)求实数的值.
(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.
(本小题满分12分)已知函数.
(Ⅰ)若,
,求函数
的值;
(Ⅱ)将函数的图像向右平移
个单位,使平移后的图像关于原点对称,若
,试求
的值.
(本小题满分12分)青海玉树发生地震后,为重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。
(Ⅰ)列举所有企业的中标情况;
(Ⅱ)在中标的企业中,至少有一家来自福建省的概率是多少?
(本小题满分12分)已知等差数列的前
项和为
,且
,
.
(Ⅰ)求数列的通项
;
(Ⅱ)设,求数列
的前n项和
.
已知函数。
(1)求函数的定义域;
(2)若函数在[10,+∞)上单调递增,求k的取值范围。