一般来说,一个人脚掌越长,他的身高就越高。现对10名成年人的脚掌长与身高
进行测量,得到数据(单位均为
)作为样本如下表所示.
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(参考数据:,
,
,
)
(12分)如图,在四棱锥中,
底面
,
,
,
是
的中点.
(Ⅰ)求和平面
所成的角的大小;
(Ⅱ)证明平面
;
(Ⅲ)求二面角的正弦值.
(12分)已知:
,
:
(
).若“非
”是“非
”的必要而不充分条件,求实数
的取值范围.
(12分)在中,已知内角
,边
.设内角
,周长为
.
(1)求函数的解析式和定义域
(2)求的最大值
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40°
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE
(3)求二面角F—BD—A的大小。