设函数.(1)若函数图像上的点到直线距离的最小值为,求的值;(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;(3)对于函数定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.
设为实数,函数. (Ⅰ)若,求的取值范围; (Ⅱ)求函数的最小值.
已知,求下列各式的值: (Ⅰ); (Ⅱ).
已知集合,. (Ⅰ)若,求(); (Ⅱ)若,求实数的取值范围.
已知函数 (1)当,且时,求证: (2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由.
已知函数 (1)若函数的值域为,求实数的取值范围; (2)当时,函数恒有意义,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号