在极坐标系中,已知点P为圆ρ2+2ρsinθ﹣7=0上任一点.求点P到直线ρcosθ+ρsinθ﹣7=0的距离的最小值与最大值.
(本小题满分13分)如图,在三棱柱中,四边形
是边长为4的正方形,平面
⊥平面
,
.
(Ⅰ)求证:⊥平面
;
(Ⅱ)若点是线段
的中点,请问在线段
是否存在点
,使得
面
?若存在,请说明点
的位置,若不存在,请说明理由;
(Ⅲ)求二面角的大小.
(本小题满分12分)四棱锥中,底面
是边长为8的菱形,
,若
,平面
⊥平面
.
(1)求四棱锥的体积;
(2)求证:⊥
.
(本小题满分12分)已知集合A={x∈R|x2+4x="0}," B={x∈R|x2+2(a+1)x+a2-1=0},如果A∩B=B,求实数a的取值范围.
(本小题满分12分)设函数的定义域为集合
,函数
的定义域为集合
.
求:(1)集合;
(2)集合.
(本小题满分14分)已知二次函数(
为常数,
)的一个零点是
.函数
,设函数
.
(1)求的值,当
时,求函数
的单调增区间;
(2)当时,求函数
在区间
上的最小值;
(3)记函数图象为曲线C,设点
是曲线C上不同的两点,点M为线段AB的中点,过点M作
轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.