在如图所示的几何体中,四边形是菱形,
是矩形,平面
⊥平面
,
,
,
,
是
的中点.
(Ⅰ) 求证://平面
;
(Ⅱ) 在线段上是否存在点
,使二面角
的大小为
?若存在,求出
的长
;若不存在,请说明理由.
(本小题10分)选修4—1:几何证明选讲
如图,设为⊙O的任一条不与直线l垂直的直径,
是⊙O与l的公共点,
⊥l,
⊥l,垂足分别为
,
,且
,
求证:
(I)l是⊙O的切线;
(II)平分∠ABD.
已知函数,
是
的一个零点,又
在
处有极值,在区间
和
上是单调的,且在这两个区间上的单调性相反.
(I)求的取值范围;
(II)当时,求使
成立的实数
的取值范围.
(本小题12分)
如图所示,已知圆为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
.
(I)求曲线的方程;
(II)若过定点F(0,2)的直线交曲线于不同的
两点
(点
在点
之间),且满足
,求
的取值范围.
(本小题12分)
下图是一几何体的直观图、主视图、俯视图、左视图.
(Ⅰ)若为
的中点,求证:
面
;
(Ⅱ)证明面
;
(Ⅲ)求面与面
所成的二面角(锐角)的余弦值.
(本小题12分)
一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:
![]() |
1 |
2 |
3 |
4 |
5 |
![]() |
0.4 |
0.2 |
0.2 |
0.1 |
0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求购买该商品的3位顾客中,至少有1位采用1期付款的概率;
(Ⅱ)求的分布列及期望
.