已知函 数.
(1)若曲线在点
处的切线与直线
垂直,求函数
的单调区间;
(2)若对于都有
成立,试求
的取值范围;
(3)记.当
时,函数
在区间
上有两个零点,求实数
的取值范围.
(本小题满分10分)选修4—4 参数方程与极坐标
求圆被直线
(
是参数
截得的弦长.
(本小题满分10分)选修4—1 几何证明选讲
在直径是的半圆上有两点
,设
与
的交点是
.求证:
![]() |
(本小题满分12分)已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)数列满足:
,且
,记数列
的前n项和为
,
且.
(ⅰ)求数列的通项公式;并判断
是否仍为数列
中的项?若是,请证明;否则,说明理由.
(ⅱ)设为首项是
,公差
的等差数列,求证:“数列
中任意不同两项之和仍为数列
中的项”的充要条件是“存在整数
,使
”
(本小题满分12分)
|
已知椭圆:
的一个焦点是(1,0),两个焦点与短轴的一个端点
(本小题满分12分)
某种食品是经过、
、
三道工序加工而成的,
、
、
工序的产品合格率分别为
、
、
.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(Ⅰ)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(Ⅱ)设为加工工序中产品合格的次数,求
的分布列和数学期望.