某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.
|
员工号 |
1 |
2 |
3 |
4 |
甲组 |
件数 |
9 |
11 |
1l |
9 |
|
员工号 |
1 |
2 |
3 |
4 |
乙组 |
件数 |
9 |
8 |
10 |
9 |
(1)用茎叶图表示两组的生产情况;
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差,其中
为x1,x2, ,xn的平均数)
如图,直三棱柱中,点
是
上一点.
⑴若点是
的中点,求证
平面
;
⑵若平面平面
,求证
.
已知命题表示双曲线,命题
表示椭圆.
⑴若命题为真命题,求实数
的取值范围.
⑵判断命题为真命题是命题
为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和 “既不充分也不必要条件”中的哪一个).
根据我国发布的《环境空气质量指数技术规定》(试行),
共分为六级:
为优,
为良,
为轻度污染,
为中度污染,
均为重度污染,
及以上为严重污染.某市2013年11月份
天的
的频率分布直方图如图所示:
⑴该市11月份环境空气质量优或良的共有多少天?
⑵若采用分层抽样方法从天中抽取
天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天?
⑶空气质量指数低于时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?
在平面直角坐标系中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点的轨迹
的方程;
(2)若是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
如图,平面平面
,
是等腰直角三角形,
,四边形
是直角梯形,
∥AE,
,
,
分别为
的中点.
(1)求异面直线与
所成角的大小;
(2)求直线和平面
所成角的正弦值.