如图,直三棱柱
中,
分别是
的中点.
(Ⅰ)证明:
平面
;
(Ⅱ)设
,求三棱锥
的体积.
设P为椭圆=1(a>b>0)上任一点,F1、F2分别为左、右焦点,求|PF1|·|PF2|的最大、最小值.
已知椭圆的中心在原点,焦点在坐标轴上,分别根据下列条件求椭圆的标准方程.
(1)长轴、短轴长之比为2∶1,一条准线为x+4=0;
(2)离心率为,一条准线为y=3.
设椭圆方程为=1(a>b>0),短轴的一个顶点B与两焦点F1、F2组成的三角形的周长为4+2
,且∠F1BF2=
,求椭圆方程.
如图所示,F是椭圆的左焦点,P是椭圆上一点,PF⊥x轴,OP∥AB,求椭圆的离心率.
已知上是减函数,且
。
(1)求的值,并求出
和
的取值范围。
(2)求证。
(3)求的取值范围,并写出当
取最小值时的
的解析式。