某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为
,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
.
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:
|
否定 |
肯定 |
总计 |
男生 |
|
10 |
|
女生 |
30 |
|
|
总计 |
|
|
|
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中
人持否定态度,
人持肯定态度;二班有
名女生被抽到,其中
人持否定态度,
人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:
![]() |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
已知椭圆,
分别为左、上顶点,F为右焦点,过F作
轴的垂线交椭圆于点C,且直线
与直线OC平行.
(1)求椭圆的离心率;
(2)已知定点M(),
为椭圆上的动点,若
的重心轨迹经过点
,求椭圆的方程.
已知函数
(1)当的单调区间;
(2)若函数在[1,3]上是减函数,求实数a的取值范围.
某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X |
1 |
2 |
3 |
4 |
5 |
f |
a |
0.2 |
0.45 |
b |
c |
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
已知命题,若
是
的充分不必要条件,求实数
的取值范围.
(3)若正数满足
,求
的最小值。