已知四棱锥的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(Ⅰ)证明:面面
;
(Ⅱ)求与
所成的角;
(Ⅲ)求面与面
所成二面角的大小。
设椭圆C:的离心率
,右焦点到直线
1的距离
,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
某网站体育版块足球栏目组发起了“射手的连续进球与射手在场上的区域位置有关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
有关系 |
无关系 |
不知道 |
|
40岁以下 |
800 |
450 |
200 |
40岁以上(含40岁) |
100 |
150 |
300 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持有关系态度的人中抽取45人,求n的值.
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体.①从这10人中选取3人,求至少一人在40岁以下的概率;②从这10人中人选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点
(1)求证:AN∥平面 MBD;
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
设△ABC的内角A、B、C所对的边分别为a、b、c,且.
(1)求角A的大小; (2)若,求△ABC的周长L的取值范围.
是否存在实数,使得
的最大值为
,若存在,求出
的值;若不存在,请说明理由.