某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组: ,
,
,
,
分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有
的把握认为“生产能手与工人所在的年龄组有关”?
附表:
如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.
(1)求证:AT2=BT·AD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.
椭圆C:(a>b>0)的离心率为
,P(m,0)为C的长轴上的一个动点,过P点斜率为
的直线l交C于A、B两点.当m=0时,
(1)求C的方程;
(2)求证:为定值.
已知函数f(x)=2ex-ax-2(a∈R)
(1)讨论函数的单调性;
(2)当x≥0时,f(x)≥0,求a的取值范围.
如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点.
(1)求证:A1B∥平面ADC1;
(2)若AB=AC,BC=AA1=2,求点A1到平面ADC1的距离.
某公司对夏季室外工作人员规定如下:当气温超过35℃时,室外连续工作时间严禁超过100分钟;不少于60分钟的,公司给予适当补助.随机抽取部分工人调查其高温室外连续工作时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中工作时间范围是[0,100],样本数据分组为[0,20),[20,40),[40.60),[60,80),[80,100].
(1)求频率分布直方图中x的值;
(2)根据频率分布直方图估计样本数据的中位数;
(3)用这个样本的频率分布估计总体分布,将频率视为概率;用分层抽样的方法从享受补助人员和不享受补助人员中抽取25人的样本,检测他们健康状况的变化,那么这两种人员应该各抽取多少人?