为了降低能源损耗,某城市对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及
的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
(本小题满分12分)
已知椭圆的离心率为
,且短轴长为2。
(I)求椭圆方程;
(II)过点(m,0)作圆的切线交椭圆于A、B两点,试将
表示为m的函数,并求
的最大值。
(本小题满分12分)
如图所示,某市准备在一个湖泊的一侧修建一条直路OC;另一侧修建一条观光大道,它的前一段OD是以O为顶点,x轴为对称轴,开口向右的抛物线的一部分,后一段DBC是函数时的图象,图象的最高点为
,垂足为F。
(I)求函数的解析式;
(II)若在湖泊内修建如图所示的矩形水上乐园PMFE,问点P落在曲线OD上何处时,水上乐园的面积最大?
.(本小题满分12分)
将如图1的直角梯形ABEF(图中数字表示对应线段的长度)沿直线CD折成直二面角,连结部分线段后围成一个空间几何体,如图2所示。
(I)证明:直线BE//平面ADF;
(II)求面FBE与面ABCD所成角的正切值。
(本小题满分12分)
在ABC中,
所对的边分别为a、b、c,且满足
(I)求a的值;(II)求的值。
(本小题满分12分)
已知数列是等比数列,
为其前n项和。
(I)设,求
;
(II)若成等差数列,证明
也成等差数列。