过点的圆C与直线
相切于点
.
(1)求圆C的方程;
(2)已知点的坐标为
,设
分别是直线
和圆
上的动点,求
的最小值.
(3)在圆C上是否存在两点关于直线
对称,且以
为直径的圆经过原点?若存在,写出直线
的方程;若不存在,说明理由.
(本小题满分10分)在中,内角A、B、C的对边分别为
,向量
,且
(1)求锐角B的大小;
(2)已知,求
的面积的最大值。
已知函数.
(1)当时,求
在
处的切线方程;
(2)设函数,
(ⅰ)若函数有且仅有一个零点时,求
的值;
(ⅱ)在(ⅰ)的条件下,若,
,求
的取值范围。
已知向量.
(1)当时,求
的值;
(2)设函数,已知在△ ABC中,内角A、B、C的对边分别为
,若
,求
(
)的取值范围.
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)
满足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=,求数列{cn}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn.
已知
(1)最小正周期及对称轴方程;
(2)已知锐角的内角
的对边分别为
,且
,
,求
边上的高的最大值.