过点的圆C与直线
相切于点
.
(1)求圆C的方程;
(2)已知点的坐标为
,设
分别是直线
和圆
上的动点,求
的最小值.
(3)在圆C上是否存在两点关于直线
对称,且以
为直径的圆经过原点?若存在,写出直线
的方程;若不存在,说明理由.
已知抛物线
的方程
过点
.
(I)求抛物线
的方程,并求其准线方程;
(II)是否存在平行于
(O为坐标原点)的直线
,使得直线
与抛物线
有公共点,且直线
与
的距离等于
?若存在,求出直线
的方程;若不存在,说明理由。
设平面向量
,其中
.
(I)请列出有序数组
的所有可能结果;
(II)记"使得
成立的
"为事件
,求事件
发生的概率.
数列 中, ,前 项和 满足 .
(I)求数列
的通项公式
以及前
项和
.
(II)若
成等差数列,求实数
的值.
在数列
中,
,且对任意
成等差数列,其公差为
.
(Ⅰ)证明
成等比数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ)记
,证明
.
已知椭圆
的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于不同的两点
、
,已知点
的坐标为
.
(i)若
,求直线
的倾斜角;
(ii)若点
在线段
的垂直平分线上,且
.求
的值.