如图,在直角坐标系中,角
的顶点是原点,始边与
轴正半轴重合,终边交单位圆于点
,且
.将角
的终边按逆时针方向旋转
,交单位圆于点
.记
.
(Ⅰ)若,求
;
(Ⅱ)分别过作
轴的垂线,垂足依次为
.记△
的面积为
,△
的面积为
.若
,求角
的值.
(1)已知在△ABC中,sinA+cosA=,求tanA的值.
(2)已知π<a<2π,cos(α﹣7π)=﹣,求sin(3π+α)•tan(α﹣
π)的值.
已知椭圆C:+
=1(a>b>0)过点(1,
),且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若•
=﹣
,求k的值.
已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)
在数列{an}中,已知.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
已知函数f(x)=2sinωxcosωx﹣2sin2ωx+
(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为
.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)若f(α)=,求sin(
π﹣4α)的值.