如图,已知矩形中,
为
的中点,沿
将三角形
折起,使
.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面
所成角的正弦值.
如图所示是一几何体的直观图、正(主)视图、侧(左)视图、俯视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)求几何体BEC-APD的体积.
设数列{an}的前n项和为Sn,已知a1=1,=an+1-
n2-n-
,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.
已知等差数列{an}满足a2=0,a6+a8=-10.
(1)求数列{an}的通项公式;
(2)求数列的前n项和.
在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得≥1?若存在,求m的最小值;若不存在,说明理由.