已知常数、
、
都是实数,函数
的导函数为
,
的解集为
.
(Ⅰ)若的极大值等于
,求
的极小值;
(Ⅱ)设不等式的解集为集合
,当
时,函数
只有一个零点,求实数
的取值范围.
(本小题满分9分) 已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线
的参数方程为:
(t为参数),曲线
的极坐标方程为:
.
(Ⅰ)写出的直角坐标方程,并指出
是什么曲线;
(Ⅱ)设直线与曲线
相交于
、
两点,求
值.
(本小题满分9分)如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<
≦1).
(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
已知数列满足
(1)求数列的通项公式;(2)若数列
满足
,求数列
的通项公式;(3)若
,求数列
的前n项和
已知的内角
、
、
的对边分别为
、
、
,
,且
(1)求角;(2)若向量
与
共线,求
、
的值.
(本题10分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.